

Private LTE & 5G Network Ecosystem Market Size, Key Players, Challenges, Strategies, Industry Verticals & Forecasts 2030

PUNE, INDIA, February 9, 2023
/EINPresswire.com/ -- The Private LTE &
5G Network Ecosystem Market refers to
the deployment of private Long-Term
Evolution (LTE) and fifth-generation (5G)
cellular networks for specific
organizations and industries. These
networks are designed to provide secure,
high-speed, and reliable communication

for specific use cases, such as industrial control systems, enterprise communications, and critical infrastructure.

The market for Private LTE & 5G Network Ecosystem has been growing in recent years due to the increasing demand for secure and dedicated communication networks for specific industries and organizations. The advent of 5G technology has brought several new capabilities, such as ultra-fast data speeds, low latency, and increased capacity, which are crucial for private network use cases.

Get a Free Sample Copy of the Global Private LTE & 5G Network Ecosystem Market Research Report at https://www.reportsnreports.com/contacts/requestsample.aspx?name=2640367

Key players in the Private LTE & 5G Network Ecosystem market include major telecom operators such as AT&T, Verizon, and T-Mobile, as well as technology providers such as Nokia, Ericsson, and Huawei.

Overall, the Private LTE & 5G Network Ecosystem market is expected to continue growing in the coming years, as industries and organizations increasingly adopt these technologies to improve their communication and control capabilities.

Topics Covered

The report covers the following topics:

Private LTE and 5G network ecosystem

Market drivers and barriers

System architecture and key elements of private LTE and 5G networks

Analysis of vertical markets and applications – ranging from mobile broadband and mission-critical voice to domain-specific applications such as CBTC (Communications-Based Train Control) and connected robotics for factory automation

Operational models for private LTE and 5G networks including independent, managed, shared core, hybrid commercial-private and private MVNO networks

Mission-critical PTT/video/data services, deployable LTE/5G systems, cellular IoT, TSN (Time Sensitive Networking), URLLC (Ultra-Reliable Low-Latency Communications) techniques, quantum cryptography, unlicensed/shared spectrum, neutral-host/multi-operator small cells, network slicing, MEC (Multi-Access Edge Computing) and other enabling technologies Key trends including the adoption of local and shared spectrum licensing, commercial readiness of private 5G systems for Industry 4.0, nationwide and city-wide public safety broadband network build-outs, regional mission/business-critical LTE networks for utilities and energy companies, localized private LTE/5G networks for railway infrastructure, ports, airports, mines, factories, warehouses, buildings, campuses and public venues, and pioneering neutral-host business models for enterprise and public wireless connectivity.

Review of private LTE and 5G network engagements worldwide, including case studies of more than 40 live networks

Spectrum availability, allocation and usage for private LTE and 5G networks across the global, regional and national regulatory domains

Standardization, regulatory and collaborative initiatives

Future roadmap and value chain

Profiles and strategies of over 600 ecosystem players including LTE/5G network infrastructure suppliers and vertical-domain specialists

Strategic recommendations for end users, LTE/5G network infrastructure suppliers, system integrators and commercial/private mobile operators

Market analysis and forecasts from 2020 till 2030

Get a 25% Discount on the Global Private LTE & 5G Network Ecosystem Market Research Report at https://www.reportsnreports.com/contacts/discount.aspx?name=2640367

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

Submarkets

RAN (Radio Access Network)

Mobile Core Backhaul & Transport

LTE 5G Spectrum Types Licensed Spectrum Unlicensed/Shared Spectrum Unlicensed/Shared Spectrum Frequency Bands 1.9 GHz sXGP/DECT 2.4 GHz 3.5 GHz CBRS 5 GHz Other Bands Vertical Markets Critical Communications & Industrial IoT ☐ Public Safety ☐ Military □ Energy Utilities Mining ☐ Transportation ☐ Factories & Warehouses Others **Enterprise & Campus Environments** Public Venues & Other Neutral Hosts **Regional Markets** Asia Pacific Eastern Europe Middle East & Africa Latin & Central America North America Western Europe **Key Questions Answered** The report provides answers to the following key questions:

Air Interface Technologies

How big is the private LTE and 5G network opportunity? What trends, drivers and barriers are influencing its growth? How is the ecosystem evolving by segment and region?

What will the market size be in 2023, and at what rate will it grow?

Which vertical markets and regions will see the highest percentage of growth?

What is the status of private LTE and 5G network adoption worldwide, and what are the primary usage scenarios of these networks?

What are the practical applications of private 5G networks – based on early commercial rollouts and pilot deployments?

How are private LTE and 5G networks delivering broadband and IoT connectivity for smart cities in areas such as public safety, transportation, utilities, waste management and environmental monitoring?

What are the existing and candidate licensed, unlicensed and shared spectrum bands for the operation of private LTE and 5G networks?

How will CBRS, sXGP, MulteFire and other unlicensed/shared spectrum access schemes and technologies accelerate the adoption of private LTE and 5G networks in the coming years? How does standardization impact the adoption of LTE and 5G networks for critical communications and industrial IoT?

When will mission-critical PTT/video/data, 3GPP-LMR interworking, URLLC for industrial IoT, railway/maritime communications and other 3GPP-specified vertical-domain capabilities become commercially mature for implementation?

How will the integration of TSN (Time Sensitive Networking) enable private 5G networks to deliver reliable, low-latency connectivity across a broad range of time-critical industrial applications?

Do IEEE 802.16s, AeroMACS, WiGRID and other technologies pose a threat to private LTE and 5G networks?

What opportunities exist for commercial mobile operators in the private LTE and 5G network ecosystem?

Will FirstNet, Safe-Net, ESN and other nationwide public safety broadband networks eventually replace existing digital LMR networks?

When will private LTE and 5G networks supersede GSM-R as the predominant radio bearer for railway communications?

What are the future prospects of rapidly deployable LTE and 5G systems?

Who are the key ecosystem players, and what are their strategies?

What strategies should LTE/5G infrastructure suppliers, system integrators, vertical-domain specialists and mobile operators adopt to remain competitive?

Direct Purchase of the Global Private LTE & 5G Network Ecosystem Market Research Report at https://www.reportsnreports.com/purchase.aspx?name=2640367

Key Findings

The report has the following key findings:

Expected to reach \$4.7 Billion in annual spending by the end of 2020, private LTE and 5G networks are increasingly becoming the preferred approach to deliver wireless connectivity for

critical communications, industrial IoT, enterprise & campus environments, and public venues. The market will further grow at a CAGR of 19% between 2020 and 2023, eventually accounting for nearly \$8 Billion by the end of 2023.

SNS Telecom & IT estimates that as much as 30% of these investments – approximately \$2.5 Billion – will be directed towards the build-out of private 5G networks which will become preferred wireless connectivity medium to support the ongoing Industry 4.0 revolution for the automation of factories, warehouses, ports and other industrial premises, besides serving additional verticals.

Favorable spectrum licensing regimes – such as the German Government's decision to reserve frequencies in the 3.7 – 3.8 GHz range for localized 5G networks – will be central to the successful adoption of private 5G networks.

A number of other countries – including Sweden, United Kingdom, Japan, Hong Kong and Australia – are also moving forward with their plans to identify and allocate spectrum for localized, private 5G networks with a primary focus on the 3.7 GHz, 26 GHz and 28 GHz frequency bands.

The very first private 5G networks are also beginning to be deployed to serve a diverse array of usage scenarios spanning from connected factory robotics and massive-scale sensor networking to the control of AVGs (Automated Guided Vehicles) and AR/VR (Augmented & Virtual Reality). For example, Daimler's Mercedes-Benz Cars division is establishing a local 5G network to support automobile production processes at its ""Factory 56"" in Sindelfingen, while the KMA (Korea Military Academy) is installing a dedicated 5G network in its northern Seoul campus to facilitate mixed reality-based military training programs – with a primary focus on shooting and tactical simulations.

The private LTE network submarket is well-established with operational deployments across multiple segments of the critical communications and industrial IoT (Internet of Things) industry, as well as enterprise buildings, campuses and public venues. China alone has hundreds of small to medium scale private LTE networks, extending from single site systems through to city-wide networks – predominantly to support police forces, local authorities, power utilities, railways, metro systems, airports and maritime ports.

Private LTE networks are expected to continue their upward trajectory beyond 2020, with a spate of ongoing and planned network rollouts – from nationwide public safety broadband networks to usage scenarios as diverse as putting LTE-based communications infrastructure on the Moon.

In addition to the high-profile FirstNet, South Korea's Safe-Net, Britain's ESN (Emergency Services Network) nationwide public safety LTE network projects, a number of other national-level engagements have recently come to light – most notably, the Royal Thai Police's LTE network which is already operational in the greater Bangkok region, Finland's VIRVE 2.0 mission-critical mobile broadband service, France's PCSTORM critical communications broadband project, and Russia's planned secure 450 MHz LTE network for police forces, emergency services and the national guard.

Other segments within the critical communications industry have also seen growth in the adoption of private LTE networks – with recent investments focused on mining, port and factory automation, deployable broadband systems for military communications, mission-critical voice,

broadband and train control applications for railways and metro systems, ATG (Air-to-Ground) and airport surface wireless connectivity for aviation, field area networks for utilities, and maritime LTE platforms for vessels and offshore energy assets.

In the coming months and years, we expect to see significant activity in the 1.9 GHz sXGP, 3.5 GHz CBRS, 5 GHz and other unlicensed/shared spectrum bands to support the operation of private LTE and 5G networks across a range of environments, particularly enterprise buildings, campuses, public venues, factories and warehouses.

Leveraging their extensive spectrum assets and mobile networking expertise combined with a growing focus on vertical industries, mobile operators are continuing to retain a strong foothold in the wider private LTE and 5G network ecosystem – with active involvement in projects ranging from large-scale nationwide public safety LTE networks to highly localized 5G networks for industrial environments.

A number of independent neutral-host and wholesale operators are also stepping up with pioneering business models to provide LTE and 5G connectivity services to both mobile operators and enterprises. For example, using strategically acquired 2.6 GHz and 3.6 GHz spectrum licenses, Airspan's operating company Dense Air plans to provide wholesale wireless connectivity in Ireland, Belgium, Portugal, New Zealand and Australia.

Cross-industry partnerships are becoming more commonplace as LTE/5G network equipment suppliers wrestle to gain ground in key vertical domains. For example, Nokia has partnered with Komatsu, Sandvik, Konecranes and Kalmar to develop tailored private LTE and 5G network solutions for the mining and transportation industries.

For More Details Inquire at

https://www.reportsnreports.com/contacts/inquirybeforebuy.aspx?name=2640367

List of Companies Mentioned

3GPP (Third Generation Partnership Project)

450 MHz Alliance

450connect

4K Solutions

5G PPP (5G Infrastructure Public Private Partnership)

5GAA (5G Automotive Association)

5G-ACIA (5G Alliance for Connected Industries and Automation)

5G-IA (5G Infrastructure Association)

7Layers

A1 Telekom Austria Group

Aaeon Technology

AAR (American Association of Railroad)

ABB

Abu Dhabi Police

Accelleran

Accenture

ACCF (Australasian Critical Communications Forum) **Accton Technology Corporation** Accuver Ace Technologies Corporation AceAxis ACMA (Australian Communications and Media Authority) Adax Addis Ababa Light Rail ADF (Australian Defence Force) **ADLINK Technology** ADNOC (Abu Dhabi National Oil Company) ADR (Aeroporti di Roma) ADRF (Advanced RF Technologies) **ADTRAN ADVA Optical Networking** Advantech **Advantech Wireless** Aegex Technologies **AEP Renewables** AeroMobile Communications AeroVironment Affarii Technologies Affirmed Networks Agnico Eagle AGURRE (Association of Major Users of Operational Radio Networks, France) Air France **Airbus** Airgain Air-Lynx **Airrays** Airspan Networks Airwayz Solutions Aiman Police AKOS (Agency for Communication Networks and Services of the Republic of Slovenia) Alcobendas City Council Alcom (Alands Telecommunications)

Alaa/Tallavav

Alea/Talkway

Alepo

Alga Microwave

Alliander

Allied Telesis

Alpha Networks

Alpha Technologies

Alphabet Alstom Altaeros Altair Semiconductor ALTÁN Redes Altice France Altice USA Altiostar Networks Altran **Alvarion Technologies** AM Telecom **Amaggi** Amarisoft Amazon **Ambra Solutions Amdocs Ameren Corporation** América Móvil **American Tower Corporation Amit Wireless Amphenol Corporation** An Garda Síochána (Irish National Police Service) Anktion (Fujian) Technology **Anritsu Corporation** ANS (Advanced Network Services) Antenna Company Anterix (pdvWireless) APCO (Association of Public-Safety Communications Officials) International API (American Petroleum Institute) APPA (American Public Power Association) **Apple** Aptel (Association of Proprietary Infrastructure and Private Telecommunications Systems Companies, Brazil) **Aptica** Agura Technologies (Veris) **Arcadyan Technology Corporation** ARCEP (Autorité de Régulation des Communications Électroniques) **Archos** ARCIA (Australian Radio and Communications Industry Association) Arete M AREU (Azienda Regionale Emergenza Urgenza) Argela/Netsia

ArgoNET

ARIB (Association of Radio Industries and Businesses, Japan)
ARM
Armasuisse (Federal Office for Defence Procurement, Switzerland)

Argiva

ARRIS International

Arrow Energy

Artemis Networks

Artesyn Embedded Computing

Artiza Networks

ASELSAN

Askey Computer Corporation

ASOCS

Assured Wireless Corporation

Astellia

ASTRI (Hong Kong Applied Science and Technology Research Institute)

ASTRID

ASUS (ASUSTeK Computer)

AT&T

Atel Antennas

Athonet

ATIS (Alliance for Telecommunications Industry Solutions)

Atlas Telecom

ATN International

Atos

AttoCore

Ausgrid

Avanti Communications Group

AVI

Aviat Networks

AVX Corporation

AWWA (American Water Works Association)

Axon

Axxcelera Broadband Wireless

Axxcss Wireless Solutions

Azcom Technology

Azetti Networks

BABS/FOCP (Federal Office for Civil Protection, Switzerland)

BAE Systems

BAI Communications

Baicells Technologies

BAKOM/OFCOM (Federal Office of Communications, Switzerland)

BandRich

BandwidthX

Barrett Communications

BARTEC

BASE (Telenet)

BASF

BATM Advanced Communications

BATS (Broadband Antenna Tracking Systems)

Baylin Technologies

BBB (BB Backbone Corporation)

BBK Electronics Corporation

BC Hydro

BCE (Bell Canada)

BDBOS (Federal Agency for Public Safety Digital Radio, Germany)

BDEW (Federal Association of Energy and Water Industries, Germany)

Beach Energy

BEC Technologies

Beeline Armenia

Beeper Communications

Benetel

BesoVideo

BHP

Bilbao Metro

Billion Electric

Many Others.

Ganesh Pardeshi ReportsnReports +1 347 333 3771 ganesh.pardeshi@reportsandreports.com

This press release can be viewed online at: https://www.einpresswire.com/article/616092742

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2023 Newsmatics Inc. All Right Reserved.