

Market Analysis: NuclearGradeResins Market, ElectronicGradeNitricOxideMarket, Perfluoroel astomer for SemiconductorMarket

Market Analysis: Nuclear Grade Resins Market, Electronic Grade Nitric Oxide (NO) Market, Perfluoroelastomer for SemiconductorMarket for 2023-2030

SEATTLE, WASHINGTON, USA, July 3, 2023 /EINPresswire.com/ -- The Phosphatidylserine Market is expected to grow from USD 83.00 Million in 2022 to USD 104.50 Million by 2030, at a CAGR of 3.30% during the forecast period.

The phosphatidylserine market is highly competitive with several players operating in the market. Some of the leading companies in the market are Chemi Nutra, Frutarom Group, Lipogen, Lipoid, Guangdong Food Industry Institute Co., Ltd., Solus Advanced Materials, Baianrui Biological, Chengdu H & C pharmaceutical (CSHPHARM), BHN, Shaanxi Guanjie Technology Co., Ltd, Novastell, Lecico, and Sciphar. These companies offer a range of phosphatidylserine products, including powders, soft gels, capsules, and tablets, and cater to various industries such as dietary supplements, functional foods and beverages, and cosmetics.

The phosphatidylserine market is expected to grow at a significant rate in the coming years, driven by increasing consumer demand for functional foods and supplements. The market players are focusing on expanding their product portfolio and market reach to leverage this growth opportunity. In 2020, Chemi Nutra reported sales revenue of \$23.5 million, while Lipogen reported sales revenue of \$6.8 million.

Click here for more information: https://www.reportprime.com/nuclear-grade-resins-r516

The Electronic Grade Nitric Oxide (NO) Market is expected to grow from USD 25.00 Million in 2022 to USD 39.00 Million by 2030, at a CAGR of 6.32% during the forecast period. The Electronic Grade Nitric Oxide (NO) target market is expected to experience significant revenue growth in the coming years. This growth is being driven by several factors, including the increasing demand for electronics devices, the rising popularity of renewable energy, and the growth of the healthcare industry. The use of Electronic Grade Nitric Oxide is particularly important in the production of semiconductors, where it is used as a doping agent, as well as in the manufacture of solar cells, where it is used to enhance energy conversion efficiency.

Electronic Grade Nitric Oxide (NO) comes in various types that cater to specific electronic

applications such as:

- ≥99.99% purity
- ≥99.5% purity

The first type, which has a purity rating of $\geq 99.99\%$, is the most commonly used in the semiconductor industry. It is highly appreciated for its quality and purity level, which is important in advanced electronics manufacturing. The next type, with a purity rating of $\geq 99.5\%$, is usually used in other electronic applications that do not require high levels of purity. Lastly, some other types of electronic grade Nitric Oxide (NO) that cater to specific electronic applications that have unique demands.

Electronic Grade Nitric Oxide (NO) is widely used in semiconductor fabrication for deposition and etching applications. NO is used for depositing oxide layers on silicon substrates as an alternative to traditional thermal oxidation methods, resulting in thinner and high-quality oxide layers. In the etching process, NO is used for the selective etching of silicon dioxide, enabling precise patterning of microstructures.

North America is expected to hold a share of around 35%, followed by Europe with a share of around 30%. The Asia Pacific region is also expected to have a substantial growth rate and is projected to have a market share of around 25% due to an increase in demand from the electronics and automotive industries. Other regions such as Latin America and the Middle East and Africa are also expected to have modest growth rates, with a market share of around 5-10%.

The electronic grade nitric oxide market is highly competitive with several established players. The key companies operating in this market include Air Liquide, Linde plc, Linggas, Sumitomo Seika, and HUATE GAS.

Air Liquide reported sales revenue of €21.1 billion in 2020, while Linde plc reported sales revenue of \$28.2 billion in 2020. Sumitomo Seika reported revenue of ¥254 billion in 2020.

Click here for more information: https://www.reportprime.com/electronic-grade-nitric-oxide-no-r517

The Perfluoroelastomer (FFKM) for Semiconductor Market is expected to grow from USD 197.90 Million in 2022 to USD 263.90 Million by 2030, at a CAGR of 4.20% during the forecast period. The Perfluoroelastomer (FFKM) for Semiconductor market is witnessing significant growth due to its excellent chemical and thermal resistance properties. This material is an ideal choice for the semiconductor industry as it offers exceptional durability, reliability, and low leachability. Increasing demand for consumer electronics, rising adoption of IoT and automation across industries, and the flourishing semiconductor industry are key factors driving revenue growth in this market.

There are different types of FFKM available for semiconductor applications, including:

- O-rings
- Gaskets
- Seals

O-rings are a common type of FFKM used in semiconductor manufacturing and assembly processes. They offer exceptional sealing performance in harsh environments and have low outgassing properties that prevent contamination in vacuum systems. Gaskets are used to seal flat surfaces, such as flanges or plates, and they provide superior resistance to thermal and chemical degradation.

Perfluoroelastomer (FFKM) is a type of high-performance elastomer that has excellent chemical resistance towards a wide range of chemicals, including aggressive plasma etch and deposition chemicals that are commonly used in semiconductor manufacturing processes. FFKM is widely used in the semiconductor industry for critical applications such as etch, deposition, and ion implantation, where high-purity and high-performance materials are necessary.

The Asia Pacific region is expected to dominate the Perfluoroelastomer (FFKM) for Semiconductor market, with a market share of around 45-50% by 2025. This can be attributed to the presence of major semiconductor manufacturers in countries like China, Japan, and South Korea. North America is expected to hold the second-largest market share, with a share of around 25-30% in the same timeframe. The growth in this region can be attributed to the increasing demand for semiconductor chips from various end-use industries. Europe is also expected to hold a significant market share of around 20-25% by 2025.

DuPont, 3M, Solvay, Daikin, Asahi Glass, Trelleborg, and Greene Tweed are some of the prominent players operating in the Perfluoroelastomer (FFKM) for Semiconductor market. These companies use Perfluoroelastomer (FFKM) in various applications such as wafer handling, etching processes, plasma ashing, and chemical vapor deposition.

In 2020, DuPont generated a total revenue of \$21.1 billion.. In 2020, 3M generated a total revenue of \$32.2 billion.

Solvay is a global leader in advanced materials and specialty chemicals, providing Perfluoroelastomer (FFKM) solutions to the semiconductor industry. In 2020 Solvay had a revenue of €12.4 billion.

Click here for more information: https://www.reportprime.com/perfluoroelastomer-ffkm-for-semiconductor-r518

Mohit Patil

Prime PR Wire +1 951-407-0500 email us here

This press release can be viewed online at: https://www.einpresswire.com/article/642613086

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2023 Newsmatics Inc. All Right Reserved.