

UniversityWafer, Inc. Silicon-on-Sapphire (SOS) Superior Benefits Over Silicon-on-Insulator (SOI) Explained

SOUTH BOSTON, MA, UNITED STATES, August 7, 2023 /EINPresswire.com/ -- UniversityWafer, Inc., a leading provider of high-quality semiconductor substrates and services, today announced new supply of high-performance Silicon-on-Sapphire (SoS) substrates, heralding a new era in semiconductor technology.

In an industry often constrained by the availability of Silicon-on-Insulator (SOI) substrates, the introduction of SoS substrates by UniversityWafer, Inc. serves as a game-changer. Delivering superior performance in key areas, SoS technology effectively addresses several pain points that have been persistent with SOI substrates.

"The development and provision of SoS technology underscore our commitment to innovation and our mission to drive advancements within the industry," said Chris Baker, Founder/CEO of UniversityWafer, Inc. "We're not just providing an alternative to SOI; we're offering a solution that brings substantial improvements in several critical areas of device performance."

UniversityWafer's SoS substrates stand out in several high-demand applications:

High-Performance <u>RF Applications</u>: SoS substrates outperform their SOI counterparts in high-frequency and radio frequency (RF) applications. The inherent property of sapphire as an excellent electrical insulator reduces parasitic capacitance, a common bottleneck in high-speed devices.

Low-Noise Applications: The noise performance of SoS substrates is exceptional. Sapphire's insulation capabilities result in significantly lower levels of thermal noise than silicon, making SoS substrates a compelling option for low-noise applications.

Radiation Hardness: SoS substrates offer unparalleled radiation hardness, making them ideal for applications in high-radiation environments such as space or nuclear technology - areas where SOI substrates often fall short.

Thermal Management: With superior thermal conductivity, sapphire allows for better thermal management in high-power or high-temperature applications, providing a significant advantage over SOI substrates.

Optoelectronics: The optical transparency of sapphire also makes SoS substrates more suitable for certain optoelectronic applications, such as integrated optics or photodetectors.

While the advantages of SoS are clear, UniversityWafer, Inc. also recognizes the need for accessible and cost-effective solutions. As such, the company has made strides in refining the manufacturing process for SoS substrates, making them a viable option for industry professionals.

"We're taking a giant leap forward in addressing the limitations of SOI substrates," said Baker.
"Our Silicon-on-Sapphire substrates offer not just an alternative, but an upgrade. It's a testament to our dedication to continually pushing the boundaries of what's possible in semiconductor technology."

With the introduction of these cutting-edge SoS substrates, UniversityWafer, Inc. continues to position itself at the forefront of semiconductor technology, driving innovation and providing the industry with the tools it needs to build the future.

About UniversityWafer, Inc.:

UniversityWafer, Inc. is a premier supplier of high-quality semiconductor products and services, serving academic and industrial institutions around the globe. Known for its commitment to innovation, UniversityWafer, Inc. offers comprehensive solutions to meet the evolving needs of the semiconductor industry.

Press Contact:

Christian Baker Founder/President chris@universitywafer.com 617-413-1577

Christian J Baker
UniversityWafer, Inc.
+1 6174131577
email us here
Visit us on social media:
Facebook
Twitter
LinkedIn

YouTube

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information. © 1995-2023 Newsmatics Inc. All Right Reserved.