


A robust phase extraction method for overcoming spectrum overlapping in shearography

FAYETTEVILLE, GA, USA, August 16, 2023 /EINPresswire.com/ -- In this paper, we propose a <u>shearography</u> phase-extraction method based on windowed Fourier ridges, which can effectively extract phase information even in the presence of severe spectrum overlapping. A simple and efficient method was applied to determine the parameters of the windowed Fourier ridges, and a linear variation window was used to match the phase-extraction requirements for different spectrum coordinates.

The same as the traditional optical interference technique, shearography obtains the object deformation information by obtaining the phase, and the measured object is often dynamic in practical applications, so the spatial carrier method, which can extract the phase information from a single speckle pattern, becomes a necessary phase extraction method for the practicalization of shearography. However, due to the coupling relationship between shearing amount and spatial carrier frequency, the spatial carrier method often suffers

Schematic diagram of the kernel of the windowed Fourier transform with frequency domain coordinates

(a) Unwrapped phase map of the method described in this paper, (b) unwrapped phase map of the nonlinear filter, and (c) unwrapped phase map of the binary mask filter.

from spectrum overlapping, which seriously affects the quality of extracted phase.

Recently, Prof. Yonghong Wang and his team from the School of Instrument Science and Opto-

electronics Engineering, Hefei University of Technology, published a research paper on <u>Light:</u> <u>Advanced Manufacturing</u>, entitled A robust phase extraction method for overcoming spectrum overlapping in shearography.

The paper briefly reviews the causes of spectrum overlapping in spatial carrier shearography and proposes a phase extraction method based on improved windowed Fourier ridge algorithm to achieve high quality phase extraction in spectrum overlapping. Simulations and practical experiments are conducted to verify the effectiveness of the proposed method for various cases.

In many cases, spatial carrier shearography is inevitably subject to spectrum overlapping, such as large deformation detection or large aera detection. This spectrum overlapping will cause a degradation in the quality of phase extraction, which in turn will cause the subsequent phase unwrapping anomalies and prevent the acquisition of accurate deformed phase information. If the phase extraction method can extract high quality phase in the case of spectrum overlapping, it will be beneficial to the practical application of shearography.

The windowed Fourier ridge (WFR) is a phase extraction method proposed by Prof. Kemao Qian of NTU mainly for phase extraction of fringes demodulation, the method has excellent anti-noise capability and also has a certain anti-spectrum overlapping capability. However, in shearography, the spectrum overlapping produced is the most serious due to the consistency of the spectrum size of background light, object light and conjugate object light, and conventional WFR algorithm is difficult to meet the requirements. In this study, an improved windowed Fourier transform ridge phase extraction method is proposed.

Since modern optical systems widely use circular aperture diaphragms, the proposed method uses the Hough transform to analyze the speckle pattern spectrum, obtains the coordinates of the center point of the object spectrum and the radius of the spectrum, and roughly determines the frequency band of the window Fourier ridge through the correspondence between the frequency domain coordinates and image pixel coordinates, which reduces the running time of the algorithm and allows the search the local frequency with smaller step size. In addition, for the regional characteristics of the object light spectrum when the spectrum is mixed, using a large window for WFR will lead to increased speckle size, and a small window will be mixed with zero-order information, so this paper proposes the use of a linearly transformed elliptical window for WFR, as shown in Figure 1, the elliptical window with the long axis parallel to the y-axis direction is used near the zero-frequency, and with the right shift of the frequency scan interval linearly changes to an elliptical window with the long axis parallel to the x-axis direction, thus maximizing the use of spectrum information and improving the quality of phase extraction.

In order to verify the effectiveness of the proposed method for phase extraction in this study, we obtain the speckle patterns under different spectrum overlapping cases by simulation and experiment, and also compare two other commonly used phase extraction methods. The

following figure shows the real phase of the phase map obtained by the three phase extraction methods after same filtering and unwrapping.

It can be seen from the figure that the unwrapped phase obtained by the proposed method is very smooth and has better quality, while the other two methods have obvious fringe breaks causing the unwrapped phase anomaly, which verifies the effectiveness of the proposed method.

###

References

DOI

10.37188/lam.2023.007

Original Source URL

https://doi.org/10.37188/lam.2023.007

Funding information

This work was supported by the National Key Research and Development Program of China (No. 2016YFF0101803) and Hefei Municipal Natural Science Foundation (No. 2021017).

About Light: Advanced Manufacturing

The Light: Advanced Manufacturing is a new, highly selective, open-access, and free of charge international sister journal of the Nature Journal Light: Science & Applications. It will primarily publish innovative research in all modern areas of preferred light-based manufacturing, including fundamental and applied research as well as industrial innovations.

Wendy Chen TranSpread +1 865-405-5638

email us here

This press release can be viewed online at: https://www.einpresswire.com/article/650169627

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2023 Newsmatics Inc. All Right Reserved.