

Sustainable development of magnesium production technology: an environmental and economic life-cycle perspective.

CHINA, November 2, 2023
/EINPresswire.com/ -- A life cycle
assessment of Pidgeon magnesium in
China was conducted to find the key
factors for the low carbonization and
green development of the magnesium
production technology. The improved
magnesium production technology
routes were additionally designed to
address the challenges of climate
change and carbon finance markets.

Magnesium, the lightest metallic structural material, has been referred to as the most promising material for green engineering in the 21st century. Currently, magnesium finds extensive application in various sectors, including

automotive manufacturing, railway transportation, 3C consumer electronics, aerospace production, and within prominent companies like Tesla and Apple.

In China, nearly all magnesium produced is done via the Pidgeon process. which involves the thermal reduction of calcined dolomite with ferrosilicon. Due to its inherent characteristics, however, this method generates large amounts of greenhouse gases (GHG) along with high consumption of fossil fuels.

To address this limitation, a team of researchers in China conducted a life cycle assessment (LCA) to investigate the energy consumption and GHG emissions associated with the Pidgeon process and five other alternative methods.

"We conducted the study at Fugu County, China's largest magnesium production site. We developed a cradle-to-gate life cycle model for Fugu magnesium, leveraging local technical processes and production data. This approach allows us to gain clear insights into the key factors

for conserving energy and reducing carbon emissions within magnesium production," shared the study's first author, Xiaorui Huang, a PhD student at the Shenyang University of Chemical Technology.

Notably, the energy consumption and GHG emissions data for the current Pidgeon process in Fugu were recently updated, with figures of 6.38x105 MJ and 39.3 t CO2-eq., respectively.

"These figures are derived from the Chinese database and accurately portray the current state of domestic magnesium production technology. They hold substantial importance in establishing the initial carbon quota for the domestic magnesium industry," explained Mr. Huang.

The researchers also noted that a new magnesium production technology using Liaoning's abandoned magnesite as raw material and the coke oven gas from steelworks as fuel showed the best economic performance in terms of cost for greenhouse gas emissions.

Their findings are published in the KeAi journal Carbon Resources Conversion.

"We hope our work would provide useful insights for the sustainable development of magnesium industries and the proper route selection under the carbon peaking and carbon neutrality goals of China," said Mr. Huang.

DOI 10.1016/j.crcon.2023.10.002

Original Source URL https://doi.org/10.1016/j.crcon.2023.10.002

Funding information National Key R&D Program of China (No.2020YFC1909304).

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/665812461

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2023 Newsmatics Inc. All Right Reserved.