

Cladophora in Qinghai Lake as ecological engineer helps increase phytoplankton biodiversity

CHINA, November 21, 2023
/EINPresswire.com/ -- Using eDNA
meta-barcoding to compare
phytoplankton communities in four
representative regions of Qinghai Lake,
the phytoplankton diversity in Qinghai
Lake is shaped by a combination of
seasonal water temperature variation,
regional electrical conductivity
variation and Cladophora biomass. The
present study is an additional research
finding on the positive impact role of
Cladophora as ecological engineer.

Excessive filamentous algae growth has become a global concern, posing serious challenges to the management of major bodies of water, including

N-nutrition Diversity 0.22*** 0.19*** dissimilarity 0.24*** TP 0.46*** 0.13* Phytoplankton 0.24*** Temp 0.09* DO PCI 0.53*** Assembly process 0.45***

Correlation among Cladophora biomass, phosphorus, nitrogen, physicochemical properties, phytoplankton species diversity, community dissimilarity, phytoplankton biomass, and assembly processes.

China's Qinghai Lake, the largest lake of Qinghai-Tibet plateau. While many studies have focused on micro-algal blooms, there remains limited research on <u>filamentous algal blooms</u> (FABs).

Cladophora, a filamentous green algae that is widely distributed in both marine and freshwater habitats, has been found to support large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements. As such, it has been commonly referred to as an "ecological engineer".

Many highland lakes, such as Qinghai Lake, are generally considered oligotrophic, characterized by low phytoplankton abundance, and with a stable zooplankton and benthic community structure. However, due to an increase in water levels caused by a warmer and moister climate, the newly inundated littoral zone has provided a suitable substrate for the growth of Cladophora. Furthermore, an abundance of bird droppings near Bird Island provide phosphorus for growth. This has led to a recurrence of Cladophora blooms after a hiatus of nearly half a century. To date, however, the impact of Cladophora meadows on phytoplankton is still unclear,

particularly in the context of alpine lakes.

To that end, a team of researchers in China profiled the phytoplankton communities in different regions of Qinghai Lake in different seasons using meta-barcode sequencing.

"We compared the phytoplankton assemblages in areas with Cladophora blooms to those without," shared Zhihua Wu, lead author of the study. "We found a correlation between the phytoplankton community structure and various physicochemical factors, including water temperature, electrical conductivity, nitrate levels, and the presence or absence of Cladophora bloom."

The study identified a greater relative abundance of Bacillariophytes in areas with Cladophora blooms compared to other regions. Additionally, these Cladophora bloom zones showed seasonal fluctuations in phytoplankton biomass and β diversity.

Based on their findings, which were published in the KeAi journal Water Biology and Security, the team hypothesized that FABs in alpine lake ecosystems may influence phytoplankton communities.

"FABs can alter the assemblage and assembly process by providing more microhabitats for algae. They could also lead to shifts in the nitrogen level particularly nitrate, possibly through interactions with other nitrogen-fixing organisms," said Wu. "The presence of FABs and its degradation may lead to changes in physicochemical properties, particularly pH, dissolved oxygen and suspended solids which, in turn, can affect the structure of the phytoplankton community."

DOI

10.1016/j.watbs.2023.100210

Original Source URL

https://doi.org/10.1016/j.watbs.2023.100210

Funding information

This work was supported by the National Natural Science Foundation of China (U22A20454) and the Second Tibetan Plateau Scientific Expedition and Research program (Grant No. 2019QZKK0304).

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/669939750 EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors

try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information. © 1995-2023 Newsmatics Inc. All Right Reserved.