

Vectorial adaptive optics: correcting both polarization and phase

CHINA, November 28, 2023 /EINPresswire.com/ -- <u>Vectorial Adaptive Optics</u> (V-AO) excels in correcting polarization and phase distortions, surpassing traditional AO. Its implementation through three methods not only enhances the vector field state but also improves the focal quality, thereby expanding its applications across diverse fields, promising advancements in optical systems and beyond.

Adaptive optics (AO) is a technique used for real-time correction of phase aberrations by employing feedback to adjust the optical system. Polarization aberrations represent another significant type of distortion that can impact optical systems. Various factors, such as stressed optical elements, Fresnel effects, and polarizing effects in materials or biological tissues, can induce polarization aberrations. These aberrations affect both system resolution and the accuracy of vector information.

Vectorial aberrations result from the combined effects of phase and polarization aberrations. They can substantially influence the performance of many modern optical systems, especially those

V-AO methods and their applications. They range from galaxy detection to nanofabrication of integrated circuit chips and encompassing biomedical and clinical characterization.

sensitive to vectors or requiring high resolution. For example, in lithographic systems, polarization aberrations play a crucial role in systematic resolution.

In a recent publication in eLight, a team of scientists, led by Dr. Chao He from the University of Oxford, has introduced a next-generation AO technique termed vectorial adaptive optics (V-AO). This technique aims to enhance both the uniformity of the vector field state and the optical resolution of an optical system.

V-AO is an innovative technique designed to correct both polarization and phase aberrations. It

stands as a powerful tool capable of improving the performance of various optical systems, including microscopes, telescopes, and laser systems. This advancement offers new insights into cutting-edge biomedical imaging, planetary observation, and the manufacturing of integrated circuit chips.

The authors of the paper outline three distinct methods for implementing V-AO: sensor-based, quasi-sensorless, and modal-sensorless. They also present experimental results showcasing the effectiveness of V-AO in correcting common vectorial aberrations.

V-AO represents a promising and innovative technology poised to revolutionize the optics community. Its potential lies in enhancing the performance of optical systems and enabling new applications. Through vectorial field feedback control methods, this next-generation AO technique is expected to benefit various research areas, ranging from astronomical telescopes to microscopy. Its applications extend from galaxy detection to laser-based and lithographic nanofabrication, as well as biomedical and clinical characterization.

DOI 10.1186/s43593-023-00056-0

Original Source URL https://doi.org/10.1186/s43593-023-00056-0

Funding information

This work was supported by the European Research Council (AdOMiS, no. 695140). C.H. was supported through a Junior Research Fellowship from St John's College, University of Oxford.

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/671385099

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2023 Newsmatics Inc. All Right Reserved.