

Tunable VO2 Cavity Enables Multispectral Manipulation from Visible to Microwave Frequencies

CHINA, February 27, 2024 /EINPresswire.com/ -- Optical materials capable of dynamically manipulating electromagnetic waves are an emerging field in optics. However, the multispectral manipulation based on these materials is challenging due to their ubiquitous wavelength dependence. Scientist in China and Singapore cascaded VO2-based tunable optical cavities with selectivetransparent layers, realizing the multispectral manipulation with reversible tunability covering wavelengths ranging from the visible to microwave regions. This work will

provide a critical approach for expanding the multispectral manipulation ability of optical systems.

Optical materials capable of dynamically manipulating electromagnetic waves are an emerging field in memories, optical modulators, and thermal management. Recently, their multispectral design preliminarily attracts much attention, aiming to enhance their efficiency and integration of functionalities. However, the multispectral manipulation based on these materials is challenging due to their ubiquitous wavelength dependence restricting their capacity to narrow wavelengths.

In a new paper (https://doi.org/10.1038/s41377-024-01400-w) published in Light Science & Applications, a team of scientists, led by Professor Yao Li from Center for Composite Materials and Structure, Harbin Institute of Technology, 150001, Harbin, China, Professor Cheng-Wei Qiu from National University of Singapore, Department of Electrical & Computer Engineering, Singapore and co-workers cascade multiple tunable optical cavities with selective-transparent layers, enabling a universal approach to overcoming wavelength dependence and establishing a multispectral platform with highly integrated functions. Based on it, they demonstrate the

multispectral (ranging from 400 nm to 3 cm), fast response speed (0.9 s), and reversible manipulation based on a typical phase change material, vanadium dioxide (VO2). The platform involves tandem VO2-based Fabry-Pérot (F-P) cavities enabling the customization of optical responses at target bands independently. It can achieve broadband color-changing capacity in the visible region (a shift of ~60 nm in resonant wavelength) and is capable of freely switching between three typical optical models (transmittance, reflectance, and absorptance) in the infrared to microwave regions with drastic amplitude tunability exceeding 0.7. Moreover, the ultrafast phase transition of VO2 enables faster response time of 0.9 s compared to electrochromic materials-based systems.

DOI

10.1038/s41377-024-01400-w

Original Source URL https://doi.org/10.1038/s41377-024-01400-w

Funding information

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT.DZJJ.2023038), the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites (JCKYS2023603C009), the National Natural Science Foundation of China (52272291). the China Scholarship Council (202206120085).

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/691641470

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2024 Newsmatics Inc. All Right Reserved.