
Important Security Checks Before Cancun
Upgrade

As the Cancun upgrade approaches,

Salus has prepared essential security

measures for developers to review and

familiarize ahead of the upgrade.

SINGAPORE, March 1, 2024

/EINPresswire.com/ -- Long story short:

The Cancun upgrade is approaching,

and this upgrade mainly includes six

execution layer changes proposed by

EIPs, namely EIP-1153, EIP-4788, EIP-

4844, EIP-5656, EIP-6780, and EIP-7516.

EIP-4844 is the star of this upgrade,

aiming to enhance the scalability of

Ethereum, reduce transaction costs

and increase transaction speed for L2.

The Cancun upgrade has been

completed on the Ethereum Goerli,

Sepolia, and Holesky testnets on

January 17, January 30, and February 7,

respectively, and is planned to be activated on the Ethereum mainnet on March 13. Before the

upgrade, Salus has organized important security precautions for this upgrade for developers to

check by themselves.

EIP Proposal Review

EIP-1153

EIP-1153 introduces transient storage opcodes, which are used to manipulate the state, behave

almost the same as storage, but the transient storage will be discarded after each transaction

ends. This means transient storage does not deserialize values from storage, nor does it serialize

values to storage, and because it does not require disk access, transient storage is cheaper. With

two new opcodes, TLOAD and TSTORE (where "T" stands for "transient"), smart contracts can

access transient storage. This proposal aims to provide a dedicated and efficient solution for

http://www.einpresswire.com
https://salusec.io/


communication between multiple nested execution frames in Ethereum transaction execution.

EIP-4788

EIP-4788 aims to expose the hash tree root of the beacon chain blocks in the EVM, allowing these

roots to be accessed within smart contracts. This would allow for trustless access to consensus

layer state, supporting use cases such as staking pools, restaking structures, smart contract

bridges, MEV mitigation, and more. This proposal stores these roots in a smart contract, and

uses a ring buffer to limit storage consumption, ensuring that each execution block only needs

constant space to represent this information.

EIP-4844

EIP-4844 introduces a new transaction format called "blob-carrying transactions", aimed at

extending Ethereum's data availability in a simple, forward-compatible way. This proposal does

this by introducing "blob-carrying transactions" that contain large amounts of data that cannot

be accessed by EVM execution but can access its commitments. This format is fully compatible

with the format used in full sharding in the future, providing temporary but significant relief for

roll-out expansion.

EIP-5656

EIP-5656 introduces a new EVM instruction MCOPY for efficiently copying memory areas. This

proposal aims to reduce the overhead of memory copy operations in the EVM by implementing

data copy between memory directly through the MCOPY instruction. MCOPY allows source and

destination addresses to overlap, considers backward compatibility in its design, and aims to

enhance the execution efficiency of various scenarios including data structure construction,

efficient access and copying of memory objects.

EIP-6780

EIP-6780 changes the functionality of the SELFDESTRUCT opcode. In this proposal,

SELFDESTRUCT will only delete the account and transfer all Ether in the same transaction as

contract creation, other than that, when SELFDESTRUCT is executed, the contract will not be

deleted, but all Ether will be transferred to the specified target. This change is to adapt to future

use of Verkle trees, aiming to simplify EVM implementation, reduce the complexity of state

changes, while retaining some common uses of SELFDESTRUCT.

EIP-7516

EIP-7516 introduces a new EVM instruction BLOBBASEFEE to return the value of the blob base-

fee of the current block it is executing in. This instruction is similar to the BASEFEE opcode in EIP-

3198, the difference being that it returns the blob base fee defined by EIP-4844. This



functionality allows contracts to programmatically consider the gas price of blob data, for

example, allowing rollup contracts to calculate the cost of blob data use without trust, or to

implement blob gas futures based on this to smooth the cost of blob data.

Officially disclosed security considerations.

EIP-1153

Smart contract developers should understand the lifecycle of transient storage variables before

use. As transient storage is automatically cleared at the end of a transaction, smart contract

developers might try to avoid clearing slots during a call to save Gas. However, this might

prevent further interaction with the contract within the same transaction (for example, in the

case of re-entrant locks) or lead to other errors, so smart contract developers should be cautious

and only keep non-zero values when transient storage slots are reserved, intended for future

calls within the same transaction. The behaviour of these opcodes is otherwise identical to

SSTORE and SLOAD, so all common safety precautions apply, especially concerning re-entrancy

risks.

Smart contract developers might also try to use transient storage as an alternative to memory

mapping. They should be aware that transient storage is not discarded like memory when a call

returns or reverts, and should favour memory in these use cases to prevent unexpected

behaviour on re-entrancy within the same transaction. The cost of transient storage on memory

is inevitably high, which should have deterred this usage pattern. Most uses of mappings in

memory can be better implemented through sorted entry lists, and memory mappings are rarely

needed in smart contracts (i.e., the author knows of no known use cases in production).

EIP-4844

This EIP increases the bandwidth requirement for each beacon block by up to about 0.75 MB.

This is 40% larger than the theoretical maximum size of today's blocks (30M Gas / 16 Gas per

calldata byte = 1.875M bytes), so it does not significantly increase the worst-case bandwidth.

After the merge, block times are static rather than unpredictable Poisson distributions, providing

a guaranteed time window for the propagation of large blocks.

Even with limited call data, the continual load of this EIP is much lower than alternatives that

could reduce call data costs, as there is no need to store the blob as long as the execution load.

This makes it possible to implement strategies where these blobs must be retained for at least

some time. The chosen specific value is MIN_EPOCHS_FOR_BLOB_SIDECARS_REQUESTS epochs,

about 18 days, much shorter in delay compared to the proposed (but not yet implemented) one-

year rotation time for executing effective payload history.

EIP-5656



Clients should ensure their implementations do not use intermediate buffers (for example, the C

stdlibmemmove function does not use an intermediate buffer), as this is a potential denial of

service (DoS) vector. Most language built-in/standard library functions for moving bytes have the

correct performance characteristics here.

Apart from this, the analysis of DoS and memory exhaustion attacks is the same as for other

memory-touching opcodes, as memory expansion follows the same pricing rules.

EIP-6780

The following applications of SELFDESTRUCT will be broken, and it's no longer safe for

applications to use it in this way:

Where CREATE2 is used to redeploy contracts at the same location to make the contract

upgradeable. This functionality is no longer supported and should be replaced with ERC-2535 or

other types of proxy contracts.

If a contract relies on burning Ether by SELFDESTRUCTing a contract as a beneficiary that was not

created in the same transaction.

Risks associated with smart contracts

EIP1153

Two scenarios are imagined using the opcodes TLOAD and TSTORE:

- The called contract uses this opcode

- The calling contract uses this opcode

Risk 1:

Compared to the traditional SSTORE and SLOAD, the added transient storage mainly changes the

storage duration of the data. The data stored by tstore is read by tload, and the data will be

released after a transaction execution ends, rather than being permanently recorded as with

sstore. Developers should understand the characteristics of this opcode to avoid misuse that

may lead to data not being correctly written into the contract, causing losses. Also, the data of

tstore is a private variable, which can only be accessed by the contract itself. If you want to use

this data externally, you can only pass it as a parameter or temporarily store it in a public storage

variable.

Risk 2:

Another potential risk is that if smart contract developers do not properly manage the life cycle

of transient storage variables, data may be cleared or wrongly retained when it shouldn't be. If



the contract expects to use data stored in transient storage in subsequent calls of the

transaction, but fails to properly manage the life cycle of these data, data may be wrongly shared

or lost between different calls, leading to logical errors or security vulnerabilities. Considering

that data like balance or allowance in projects like Token not being properly stored will lead to

errors in contract logic, causing losses. Or using this opcode when setting the owner address will

cause the privileged address to not be correctly recorded, losing the modification of important

contract parameters.

Consider a smart contract that uses transient storage to temporarily record trade prices on a

cryptocurrency trading platform. The contract updates the price after each transaction and

allows users to query the latest price in a short time. However, if the contract design does not

take into account the characteristic of transient storage being automatically cleared when the

transaction ends, then in the time between the end of one transaction and the start of the next,

users may get a wrong or outdated price. This could not only lead to users making decisions

based on incorrect information, but also be maliciously exploited, affecting the platform's

reputation and user asset security.

EIP-6780

This proposal changes the behavior of the previous selfdestruct opcode, does not destroy the

contract, only transfers tokens, and only contracts created in the same transaction with self-

destruction will be destroyed. The impact of this EIP is relatively large.

Using create2 to redeploy contracts at the same address to make the contract upgradeable. This

feature is no longer supported and should be replaced with ERC-2535 or other types of proxy

contracts. (This may affect the security of chain contracts that use create2 to implement

upgradeable contracts)

In smart contracts, the SELFDESTRUCT operation allows contracts to be destroyed and sends the

contract balance to a specified target address. In this case, the contract uses SELFDESTRUCT to

destroy Ether and sends the destroyed Ether to the contract. But the contract can only be a

contract created in the same transaction (a contract created by this contract or other contracts in

the same transaction). Otherwise, only Ether will be transferred without destroying the contract

(for example, self-destruction and the beneficiary is the self-destructing contract, this will not

make any change). This will affect all contracts that depend on selfdestruct for withdrawal or

other operations.

A Gas Token similar to the 1inch CHI Token works by maintaining an offset, always executing

CREATE2 or SELFDESTRUCT at this offset. After this update, if the contract at the current offset

has not been correctly self-destructed, the subsequent CREATE2 will not be able to successfully

deploy the contract.

The implementation of this proposal cannot directly cause attacks on the contract, but it will



damage the normal logic of the originally deployed contracts that rely on the selfdestruct

operation (contracts that only rely on self-destruction for fund transfer are not affected, but if

subsequent operations require self-destructed contracts to be deleted, they are affected),

leading to unexpected contract operations. From the perspective of the contracts and users, this

could lead to contract strikes, losses of funds, and other damages (for example, the original use

of create2 to deploy a new contract at the original address, self-destruct the original contract for

upgrading, can no longer be successfully deployed). In the long run, modifying the functionality

of an opcode could lead to centralization issues.

For example, there is a vault contract to be updated:

- The create2 temporary storage contract is used to temporarily reserve funds for the vault.

- Self-destruction of the vault contract, funds are transferred to the temporary contract (only

transferring funds without destroying the contract).

- A new vault contract is created at the original address using create2 (fails because the original

vault contract was not destroyed).

- The temporary contract is self-destructed to return the funds to the vault (loss of funds, as the

vault contract was not created).

Extended Reading

The Cancun upgrade will further enhance Ethereum's competitive advantage. However, the

changes to the core smart contract layer brought about by this upgrade carry risks, which could

affect the secure operation of existing DApps. These changes and potential risks also need to be

highly regarded during the process of smart contract development. You can contact Salus for risk

checks or audit support, or you can understand the changes by reading related content further.

- Cancun Network Upgrade Specification

- EIP-1153

- EIP-4788

- EIP-4844

- EIP-5656

- EIP-6780

- EIP-7516

- Metapod contract

- GasToken2 contract

Shawn

Salus

pr@salusec.io

Visit us on social media:

Twitter

LinkedIn

https://twitter.com/salus_sec
https://www.linkedin.com/company/salusec/


This press release can be viewed online at: https://www.einpresswire.com/article/692575671

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors

try to be careful about weeding out false and misleading content. As a user, if you see something

we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire,

Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable

in today's world. Please see our Editorial Guidelines for more information.

© 1995-2024 Newsmatics Inc. All Right Reserved.

https://www.einpresswire.com/article/692575671
https://www.einpresswire.com/editorial-guidelines

