

Solid-state reaction among multiphase multicomponent ceramic enhances ablation performance

USA, May 15, 2024 /EINPresswire.com/
-- New study reveals that solid-state
reaction process would occur among
multiphase multicomponent ceramic
during ablation, thereby, resulting in
their composition evolution. This
composition evolution led to the
improvement of thermodynamic
stability of multiphase multicomponent
ceramic and enhanced its ablation
performance. This work suggests that
multiphase design allows the
multicomponent ceramic to achieve
even better ablation performance.

Multicomponent ultra-high temperature ceramic (UHTC) has attracted much attention in research due to its superior high-temperature

mechanical properties, lower thermal conductivity and enhanced oxidation resistance. Multiphase design is a promising approach to achieve improved ablation resistance of multicomponent UHTC, potentially meeting the stringent demands for thermal protection materials (TPMs) for aerospace. However, understanding the ablation mechanism of multiphase multicomponent ceramic is foundational.

In the past, it is generally believed that the constituent phases among the multiphase multicomponent UHTC would not react with each other during ablation. However, a team of researchers led by Xiang Xiong and Yi Zeng at the Central South University in China reported a new solid-state reaction process between different multicomponent phases during ablation. Their investigation focused on a three-phase multicomponent ceramic consisting of Hf-rich carbide, Nb-rich carbide and Zr-rich silicide phases. More importantly, they found the ablation performance was also affectsed by this solid-state reaction.

Specifically, this solid-state reaction occurred in the matrix/oxide scale interface region. During this process, metal cations counter-diffused between the multicomponent phases, resulting in their composition evolution.

"The composition evolution allowed the underlying multicomponent phases to remain stable even under a higher oxygen partial pressure, which led to the improvement of thermodynamic stability of three-phase multicomponent ceramic," explains Xiong. "Moreover, this solid-state reaction process appeared synergistic with the preferential oxidation behavior among the oxide scale in enhancing of the ablation performance within a specific temperature range."

"The present findings proved that multiphase design allows the multicomponent ceramic to achieve even better ablation performance. The obtained results may also provide a preliminary basis for the future development of multiphase multicomponent UHTCs," Zeng adds.

DOI

10.1016/j.apmate.2024.100189

Original Source URL

https://doi.org/10.1016/j.apmate.2024.100189

Funding information

This work was supported by the National Natural Science Foundation of China (52072410 and 51602349).

Lucy Wang BioDesign Research +86 177 0518 5080 email us here

This press release can be viewed online at: https://www.einpresswire.com/article/711759029

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2024 Newsmatics Inc. All Right Reserved.