

New Electrostatic Sampler Boosts Indoor Virus Detection Speed

USA, May 16, 2024 /EINPresswire.com/
-- Researchers have developed a
groundbreaking electrostatic air
sampler that enhances the rapid
monitoring of airborne influenza and
coronavirus. The device, capable of
high air flow rates, offers significant
advancements in detecting viral
presence in indoor environments

Virus monitoring in real field

Air fan

Lab-test and field test conducted

(ungsten wires)

20 mm

Liquid flow pipes Ground electrodes

• High amount of a sample

• High collection efficiency

• High virus recovery

Graphic abstract.

through polymerase chain reaction (PCR) analysis.

Airborne transmission of viruses, including SARS-CoV-2, has been a focal point for infection prevention in multi-use facilities with dense populations. Traditional air samplers often require long sampling times, increasing the risk of false negatives due to RNA degradation. The newly developed electrostatic sampler addresses this issue by increasing the airflow rate and improving collection efficiency.

Researchers from Yonsei University, in collaboration with the Korea Research Institute of Standards and Science, have developed a groundbreaking electrostatic air sampler that enhances the rapid monitoring of airborne influenza and coronavirus. The device, capable of high air flow rates, offers significant advancements in detecting viral presence in indoor environments through polymerase chain reaction (PCR) analysis. More information can be found in the article (DOI: 10.1007/s11783-024-1845-y) published in the Frontiers of Environmental Science & Engineering.

This device is designed to operate at an exceptionally high air flow rate of 250 liters per minute, a significant leap from conventional samplers. Its unique feature is the ability to attract and capture viral particles through an enhanced electrostatic method, ensuring that the integrity of the viral RNA remains intact for reliable PCR analysis. In practical tests, this innovative sampler has been able to collect and prepare samples for PCR within just 40 minutes, far surpassing the efficiency of existing technologies. The rapid turnaround is crucial in environments such as classrooms, hospitals, and public transportation systems, where timely detection can lead to immediate action, potentially preventing virus spread. This capability also opens new avenues for continuous monitoring in various settings, providing a continuous assessment of air quality

Highlights
\square Electrostatic virus sampler was designed and evaluated in a pandemic scenario and real indoor
field environment.
Airborne virus was gently sampled with high aerosol sampling performance.

Professor Jungho Hwang, lead researcher, stated, "Our electrostatic air sampler's capability to quickly collect and detect viral particles is a game-changer for public health safety. It ensures rapid response and containment measures can be implemented more effectively."

☐ Viral samples detectable for PCR were produced within 40 min.

This technology is pivotal for facilities like hospitals, schools, and public transportation, where high-density populations are present. The ability to monitor and detect viral loads swiftly allows for timely interventions, potentially curbing transmission rates and alerting health authorities to emergent outbreaks.

DOI 10.1007/s11783-024-1845-y

Original Source URL https://doi.org/10.1007/s11783-024-1845-y

Funding information

and safety.

This research was supported by the Korea Environment Industry and Technology Institute (KEITI) through the Technology Developmen Project for Biological Hazards Management in Indoor Air, funded by the Korea Ministry of Environment (MOE) (No. 2021003370005).

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/712076589

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2024 Newsmatics Inc. All Right Reserved.