

The world's strongest ionizing terahertz radiation

USA, June 7, 2024 /EINPresswire.com/ -Terahertz waves, known as nonionizing radiation, can turn into
ionization radiation when sufficiently
many terahertz photons are focused in
space and time. A team led by
scientists in Korea and the USA has
created the world's most intense
terahertz pulses that can
instantaneously ionize atoms and
molecules and convert them into
plasma. This study discusses terahertzdriven tunneling ionization, which will

pave the road to extreme nonlinear and relativistic terahertz physics in plasmas.

Lying between the microwave and infrared regions of the electromagnetic spectrum, the terahertz (1 THz = 1012 Hz) gap is being rapidly closed by development of new terahertz sources and detectors, with promising applications in spectroscopy, imaging, sensing, and communication. These applications greatly benefit from terahertz sources delivering high-energy or high-average-power radiation. On the other hand, high-intensity or strong-field terahertz sources are essential to observe or exploit novel nonlinear terahertz-matter interactions, where the electric and/or magnetic field strengths play a key role.

To produce high-energy terahertz pulses, the scientists used a 150-terawatt-class Ti:sapphire

laser to convert optical energy into terahertz radiation (so-called optical rectification) in lithium niobate (LiNbO3), a crystal that exhibits strong nonlinearities and high damage thresholds. In particular, they used a large-diameter (75 mm) lithium niobate wafer, also doped with 5% magnesium oxide (MgO), to produce energy-up-scalable terahertz radiation.

For efficient conversion from optical to terahertz radiation, another important factor must be considered: phase (or velocity) matching. The scientists explained "If the optical laser pulse that generates terahertz radiation propagates at the same velocity with the generated terahertz waves in lithium niobate, then the output terahertz energy can continuously grow with the propagation distance."

"Conventionally, a tilted pulse front method is used to satisfy phase matching in a prism-shaped lithium niobate. This method, however, produces mostly low-frequency terahertz radiation, typically peaked at less than 1 THz, which naturally leads to relatively large focal spot sizes (~mm), consequently limiting the peak terahertz field strength at the focus," they added.

They previously found a new phase matching condition in lithium niobate, which does not require any pulse front tilting. They noted "The velocity of terahertz waves is generally frequency-dependent and varies so large between two phonon resonance frequencies that there exists a frequency at which both terahertz and laser pulses propagate at the same velocity. This occurs at approximately 15 THz for Ti:sapphire laser pulses having a central wavelength of 800 nm. This phase matching made it possible to produce millijoule-level terahertz waves. Moreover, the resulting 15-THz radiation can be tightly focused, potentially producing strong electromagnetic fields at the focus."

The scientists have carefully determined the peak electric and magnetic field strengths, 260 ± 20 MV/cm and 87 ± 7 T at the focus, by separately measuring the terahertz energy, focal spot size, and pulse duration.

"Such an intense terahertz pulse, when focused into a gaseous or solid medium, can tunnel ionize the constituent atoms or molecules, and convert the medium into a plasma. As proof of principle, we have demonstrated terahertz-driven ionization of various solid targets including metals, semiconductors, and polymers," they emphasized.

"Our terahertz source uses a planar lithium niobate crystal and is promising for scaling up the output energy and field strength even further. This can generate super-strong (~GV/cm) terahertz fields," they added.

The scientists believe that their research will open up new opportunities to not only study nonlinear effects in terahertz-produced plasmas but also utilize terahertz-driven ponderomotive forces for various applications including multi-keV terahertz harmonic generation and even studying relativistic effects by terahertz-accelerated electrons.

DOL 10.1038/s41377-024-01462-w

Original Source URL https://doi.org/10.1038/s41377-024-01462-w

Funding information

This work is supported by APRI-GIST Research Institute (GRI 2023) and the National Research Foundation of Korea (NRF-2022R1A2C1012263). K.Y.K. acknowledges the Air Force Office of Scientific Research (FA9550-16-0163) and the Office of Naval Research (N00014-17-1-2705).

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/718129743

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2024 Newsmatics Inc. All Right Reserved.