

Unraveling the Mechanism Behind Orthodontic Tooth Movement

SHANNON, CLARE, IRELAND, March 2, 2025 /EINPresswire.com/ -- A new study in Genes & Diseases has revealed that heavy mechanical force can decelerate orthodontic tooth movement (OTM) by altering the way periodontal ligament cells (PDLCs) respond to stress. The authors of this article have identified the key role of Piezo1, a mechanosensitive ion channel, in controlling this process by regulating mitochondrial calcium levels, ultimately affecting bone remodeling.

Orthodontic tooth movement is driven by the body's response to mechanical forces applied during treatment. While light mechanical forces are known to optimize movement by promoting bone remodeling, excessive force has been observed to slow down the A Light Heavy Yoda1-Light GsMTx4-Heavy B GsMTx4-Hea

Heavy mechanical force (MF)-activated Piezo1 decelerates orthodontic tooth movement (OTM) in vivo.

process. This study explains the cellular mechanisms behind this phenomenon and provides potential therapeutic targets to improve treatment efficiency.

It was discovered that heavy force upregulates Piezo1 expression in periodontal ligament cells, disrupting mitochondrial calcium homeostasis. This occurs through the inhibition of ITPR3, a key calcium transporter in mitochondria-associated membranes (MAMs). The resulting reduction in mitochondrial calcium uptake leads to lower cytoplasmic mitochondrial DNA release, ultimately suppressing the cGAS–STING signaling pathway—a crucial regulator of osteoclast activity. Since osteoclasts are responsible for breaking down bone tissue to allow tooth movement, their suppression under heavy mechanical force leads to slower tooth repositioning.


In experiments involving both animal models and in vitro studies, the authors found that

blocking Piezo1 activity or enhancing STING signaling could restore osteoclast function and accelerate tooth movement under heavy force conditions. These findings suggest that targeting Piezo1 or its downstream pathways could help optimize orthodontic treatment strategies, allowing for more predictable and efficient tooth realignment.

This research not only enhances understanding of biomechanical force transduction in orthodontics but also opens new avenues for developing pharmacological interventions that could improve treatment outcomes. By finetuning the balance of mechanical force and cellular signaling, clinicians may be able to personalize orthodontic treatments for faster and safer results.

The findings mark a significant step forward in orthodontic science, shedding

light on how force application impacts cellular behavior and offering a roadmap for future innovations in tooth movement acceleration strategies.

Heavy mechanical force (MF) conditions activate Piezo1-inhibited ITPR3 in periodontal ligament stem cells.

Funding Information:

Natural Science Foundation of China 82471016

Natural Science Foundation of China 81470772

Chongqing Talent Program: Innovative Leading Talents CQYC20210303384 Chongqing Medical Scientific Research Project (China) cstc2020jcyj-msxmX0307 Youth Innovation in Future Medicine (Chongqing Medical University) W0033

#####

Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis is placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and

regenerative medicine.

Scopus CiteScore: 7.3 Impact Factor: 6.9

######

More information:

https://www.keaipublishing.com/en/journals/g enes-and-diseases/

Editorial Board:

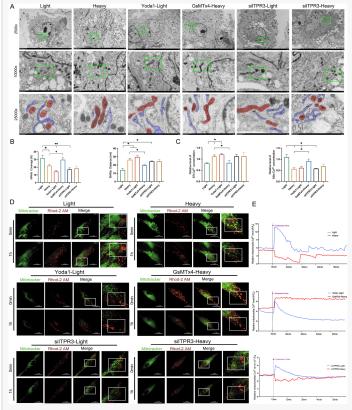
https://www.keaipublishing.com/en/journals/genes-and-diseases/editorial-board/

All issues and articles in press are available online in ScienceDirect (https://www.sciencedirect.com/journal/genesand-diseases).

Submissions to Genes & Disease may be made using Editorial Manager (https://www.editorialmanager.com/gendis/def ault.aspx).

Print ISSN: 2352-4820 eISSN: 2352-3042 CN: 50-1221/R

Contact Us: editor@genesndiseases.com


X (formerly Twitter): @GenesNDiseases (https://x.com/GenesNDiseases)

######

Reference

Ye Zhu, Xuehuan Meng, Qiming Zhai, Liangjing Xin, Hao Tan, Xinyi He, Xiang Li, Guoyin Yang, Jinlin Song, Leilei Zheng, Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation, Genes & Diseases, Volume 12, Issue 2, 2025, 101434, https://doi.org/10.1016/j.gendis.2024.101434

Genes & Diseases Editorial Office Genes & Diseases

Heavy mechanical force (MF)-activated Piezo1 down-regulates [Ca2+]m levels by inhibiting ITPR3 in mitochondria-associated membranes.

+ +86 23 6571 4691 editor@genesndiseases.com

This press release can be viewed online at: https://www.einpresswire.com/article/790390838 EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information. © 1995-2025 Newsmatics Inc. All Right Reserved.