


New Avenues in Breast Cancer Treatment: The Role of Ubiquitin-Specific Proteases in Programmed Cell Death

SHANNON, CLARE, IRELAND, March 10, 2025 /EINPresswire.com/ -- This review highlights the critical role of ubiquitinspecific proteases (USPs) in regulating programmed cell death (PCD) in breast cancer (BC). As the most prevalent malignant tumor among women, BC remains a significant global health challenge. Despite advances in therapy, resistance to treatment and metastasis continue to pose major obstacles. This article presents a comprehensive analysis of how ubiquitination and deubiquitination processes, governed by USPs, influence various cell death pathways crucial to cancer progression and treatment response.

The intricate ubiquitin-proteasome system (UPS) plays a vital role in maintaining cellular homeostasis, determining the fate of apoptotic, autophagic, necroptotic, ferroptotic, and pyroptotic pathways. By selectively modulating proteins involved in these pathways, USPs contribute to either promoting or inhibiting cancer cell survival. The review explores the dual role of PCD in BC, where certain forms

Different types of programmed cell death. This picture summarizes the different pathways of programmed cell death (Note: ROS: reactive oxygen species).

Overview of the process of ubiquitination and the structure of ubiquitin specific protease.

of cell death act as a defense mechanism, while others enhance tumor growth and resistance to therapy.

Apoptosis, the most studied form of PCD, is closely linked to tumor suppression. However, BC

cells often develop resistance to apoptotic signals, enabling uncontrolled proliferation. USPs such as USP22 and USP7 regulate key proteins like c-Myc and p53, influencing apoptosis in BC. Similarly, autophagy, a mechanism for cellular self-digestion, has a paradoxical role in BC, either inhibiting or promoting tumor survival. The review discusses how USP8 and USP13 influence autophagy by regulating Beclin1 and p62/SQSTM1, potentially affecting therapeutic outcomes.

Emerging non-apoptotic PCD pathways such as ferroptosis and pyroptosis have garnered attention for their

USP24 p53

ATG5 Stabilize
USP22

USP25 Stabilize
USP26 Stabilize
USP27 Stabilize
USP27 Stabilize
USP27 Stabilize
USP27 Stabilize
USP27 Stabilize
USP28 Stabilize
USP28 Stabilize
USP29 Stabilize

The role of USPs in PCD in BC. This figure summarizes the mechanisms of USPs in PCD-related proteins or pathways in BC, which were discussed in this review article. (Note: USP: ubiquitin specific protease; ATG14L: autophagy-related gene 14-like protein; N

potential in cancer therapy. Ferroptosis, a form of iron-dependent cell death, has been identified as a promising target in triple-negative breast cancer (TNBC). The review highlights the role of USP7 and USP35 in ferroptosis regulation, underscoring the therapeutic possibilities of manipulating iron metabolism and oxidative stress. Pyroptosis, an inflammatory cell death pathway, is also examined, with a focus on USP48 and gasdermin E (GSDME), which contribute to immune responses and tumor suppression.

Beyond their influence on PCD, USPs play a role in tumor metastasis and drug resistance, presenting new challenges and opportunities for targeted therapy. The review emphasizes the need for further investigation into the crosstalk between USPs and PCD mechanisms, particularly in necroptosis and anoikis, which are less understood but critical in BC progression.

By unveiling the complex interactions between ubiquitination, cell death pathways, and cancer biology, this review lays the foundation for novel therapeutic strategies.

Funding Information:

University of South China Innovation Foundation For Postgraduate 233YXC001
Postgraduate Scientific Research Innovation Project of Hunan Province CX20230955
National Natural Science Foundation of China 82103171
Clinical Medical Research "4310" Program of the University of South China 20224310NHYCG07

#####

Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis is placed

on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.

Scopus CiteScore: 7.3 Impact Factor: 6.9

######

More information: https://www.keaipublishing.com/en/journals/genes-and-diseases/ Editorial Board: https://www.keaipublishing.com/en/journals/genes-and-diseases/editorial-board/

All issues and articles in press are available online in ScienceDirect (https://www.sciencedirect.com/journal/genes-and-diseases). Submissions to Genes & Disease may be made using Editorial Manager (https://www.editorialmanager.com/gendis/default.aspx).

Print ISSN: 2352-4820 eISSN: 2352-3042 CN: 50-1221/R

Contact Us: editor@genesndiseases.com

X (formerly Twitter): @GenesNDiseases (https://x.com/GenesNDiseases)

######

Reference

Wen Yan, Shasha Xiang, Jianbo Feng, Xuyu Zu, Role of ubiquitin-specific proteases in programmed cell death of breast cancer cells, Genes & Diseases, Volume 12, Issue 3, 2025, 101341, https://doi.org/10.1016/j.gendis.2024.101341

Genes & Diseases Editorial Office Genes & Diseases + +86 23 6571 4691 editor@genesndiseases.com

This press release can be viewed online at: https://www.einpresswire.com/article/792397578

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something

we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information. © 1995-2025 Newsmatics Inc. All Right Reserved.