ﬁPREsswiRE

Stereoisomeric Engineering for Critical
Balance of Solvation and Adsorption

Capability

GA, UNITED STATES, April 15, 2025
/EINPresswire.com/ -- This study introduces
the stereoisomerism to inform the balanced
selection of electrolyte additives to achieve
the optimal deposition behaviors and
electrochemical performance. An appropriate
level of solvation ability and adsorption ability
can facilitate faster deposition kinetics and
encourage the preferential orientation
growth of (002) planes. With sorbitol, the
symmetrical battery can stably cycle for over
3470 h at 2 mA cm-2 and 1 mAh cm-2, and
full battery also exhibits excellent
electrochemical performance.

Agueous zinc-ion batteries (AZIBs)
demonstrate remarkable advantages in high
safety, abundant reserves, and cost-
effectiveness. Nevertheless, the zinc metal
anode fails to deliver optimal performance
during repeated plating/stripping processes,
where water molecules serve as critical
instigators of corrosion and heterogeneous
deposition.
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Comparative analysis of three electrolyte
systems: mechanism schematics and

corresponding properties.

To strategically regulate aqueous species in both bulk electrolyte and interfacial regions,
electrolyte additives have been extensively employed to modulate electrolyte properties. These
additives primarily function through two mechanisms: 1) interfacial adsorption to eliminate free
water molecules, or 2) solvation structure modification through hydrogen-bond network
disruption to immobilize reactive water in bulk electrolyte.

Consequently, the solvation-modulating capability and adsorption potential of additives
constitute crucial metrics for evaluating their effectiveness. Notably, organic additives containing
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multiple functional groups frequently
exhibit structural isomerism -
compounds sharing identical
molecular formulas but distinct
configurations. Such structural
divergences often translate to
substantially different electrochemical
behaviors, highlighting the importance
of molecular engineering in additive
design.

In a new studypublished in the KeAi
journal Advanced Powder Materials,
sorbitol (Sor) and mannitol (Man), a
pair of polyhydroxy stereocisomerisms,
were chosen as electrolyte additives
for designing two electrolyte systems
to identify the equilibrium between
solvation and adsorption.

“Both Sor and Man have six hydroxyl
groups, with only the spatial position of
the hydroxyl group on the second
carbon being different,” explains the
study’s first author Wen Liu. “It's the
structure-activity relationship between
these two compounds that accounts
for the observed differences in battery
performance.”

Surprisingly, the trihydroxy group on
the same side of Sor exhibits a
stronger adsorption capacity than the
dihydroxyl groups on the same side of
Man, and it generates a coplanar
templating effect.

“This effect promotes the uniform
distribution of charges, increases
nucleation sites, and induces (002)
preferred growth. Compared to base
ZnS0O4 electrolyte, Sor and Man
molecules present stronger binding
energy with Zn2+ ions and they can
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Comparative analysis of zinc deposition/stripping
behaviors and electrochemical properties in three
electrolyte formulations.
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Solvation structures and their impact on de-
solvation/deposition dynamics in three electrolyte

formulations.



participate in solvation structure of
Zn2+ ions,” says Liu.

Due to the weaker interaction force
between Sor molecular and Zn2+ ions
compared to Man, it ensures a faster
de-solvation process and accelerates
the deposition kinetics. These unique
advantages make Zn anode in Sor
added electrolyte demonstrate more
exceptional performance for more
than 3470 h at 2 mA cm-2 and 1 mAh
cm-2.

“Moreover, Zn//AC full cell with Sor
additive can steadily operate for 50000
cycles at 3 A g-1. In order to test the
practical application, Zn//12 full cell
under low N/P ratio of 4.37 can also
steadily run for 710 cycles at 1 A g-1,
exhibiting four-times lifespan than
bare ZnSO4 electrolyte,” adds Liu.
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Adsorption selectivity of additives: a critical
resistance.
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Practical application: full battery electrochemical

performance.
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