

HER3 Re-Emerges as a Pivotal Target in the Fight Against Cancer

SHANNON, CLARE, IRELAND, May 12, 2025 /EINPresswire.com/ -- A new publication shines a spotlight on HER3, a long-overlooked member of the ErbB receptor family, revealing its critical role in cancer progression and resistance to therapy. Once considered a passive player due to its weak kinase activity, HER3 is now recognized as a major contributor to the survival and spread of various solid tumors, including breast, lung, colorectal, pancreatic, and gynecologic cancers.

HER3 functions through its interaction with other ErbB receptors, particularly HER2, forming potent signaling pairs that drive cell survival, proliferation, and metastasis. These dimerized complexes activate key downstream pathways, such as MAPK and PI3K/Akt, both essential in cancer cell growth and evasion of apoptosis.

Overexpression or mutation of HER3 in tumor cells correlates with poor patient outcomes and therapeutic resistance, positioning it as a high-value therapeutic target.

Despite the development of multiple HER3-targeted therapies, most clinical applications have yielded modest results. The limited success is now attributed to the failure to match treatments to patients with active HER3 signaling. Crucially, only a subset of tumors—such as those with NRG1 gene fusions or high HER3 expression—appear to respond well, highlighting the need for predictive biomarkers to guide treatment selection. Without precise patient stratification, many

promising therapies fall short of their potential.

The tumor microenvironment plays a decisive role in regulating HER3 activity. Stromal components, particularly fibroblasts and liver endothelial cells, secrete factors that activate HER3 independently of its known ligands, contributing to therapy resistance and disease recurrence. This underscores the importance of considering non-genetic activation mechanisms in future treatment strategies.

Antibody-drug conjugates (ADCs) have emerged as a powerful approach to overcome resistance. By combining HER3-targeting antibodies with cytotoxic payloads, ADCs selectively eliminate HER3-positive cancer cells while minimizing systemic toxicity. Encouraging early results in HER3-expressing breast and lung

PPP

Cancer cell
Survival

Schematic illustration of cancer-associated HER3 activated by the microenvironment components. HER3, human epidermal growth factor receptor 3.

cancers demonstrate their potential to reshape HER3-directed therapies.

The review also calls for integrating HER3 expression profiling into clinical trial design and patient care. Accurate detection methods and biomarker-driven therapies could transform HER3 from a failed target to a cornerstone of precision oncology.

With a better understanding of its biology, interaction with the microenvironment, and the emergence of next-generation therapies, HER3 is being redefined as a central player in cancer therapeutics—one that may finally deliver on its long-overdue promise.

#####

Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis is placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and

regenerative medicine. Scopus CiteScore: 7.3 Impact Factor: 6.9

######

More information: https://www.keaipublishing.com/en/journals/genes-and-diseases/ Editorial Board: https://www.keaipublishing.com/en/journals/genes-and-diseases/editorial-board/

All issues and articles in press are available online in ScienceDirect (https://www.sciencedirect.com/journal/genes-and-diseases).

Submissions to Genes & Disease may be made using Editorial Manager

(https://www.editorialmanager.com/gendis/default.aspx).

Print ISSN: 2352-4820 eISSN: 2352-3042 CN: 50-1221/R

Contact Us: editor@genesndiseases.com

X (formerly Twitter): @GenesNDiseases (https://x.com/GenesNDiseases)

Reference

Omkar Desai, Moeez Rathore, Christina S. Boutros, Michel'le Wright, Elizabeth Bryson, Kimberly Curry, Rui Wang, HER3: Unmasking a twist in the tale of a previously unsuccessful therapeutic pursuit targeting a key cancer survival pathway, Genes & Diseases, Volume 12, Issue 4, 2025, 101354, https://doi.org/10.1016/j.gendis.2024.101354

Funding Information:

National Institutes of Health R00CA225756 National Institutes of Health R37CA278982 U.S. Department of Defense HT9425-23-1-0657

Genes & Diseases Editorial Office Genes & Diseases +86 23 6571 4691 editor@genesndiseases.com

This press release can be viewed online at: https://www.einpresswire.com/article/811874892

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information. © 1995-2025 Newsmatics Inc. All Right Reserved.