

ExtractoDAO's Revolutionary Tech Predicted 300M^{II} Primordial Black Hole — Now Confirmed by JWST

"Simulations from 2024–2025 matched *IWST's discovery of a 300M-solar-mass* black hole, confirming DUT's predictive power."

CURITIBA, PARANá, BRAZIL, August 15, 2025 /EINPresswire.com/ -- DUT Quantum Technology Anticipated a 300 Million Solar Mass Primordial Black Hole: Prediction Confirmed by JWST and Published Before the Official Announcement

Based on 2024–2025 simulations, the Dead Universe Theory Simulator reproduced the masses, redshifts, and

spectral characteristics now confirmed by CAPERS-LRD-z9 observations published in The Astrophysical Journal.

Observed Degree of **DUT Prediction/Explanation (Article)** Characteristic (JWST) Alignment High mass (10%-10% Result from "gravitational fossils from an earlier structural phase **** of the same universe," not rapid accretion (Sections 2, 5). Explained by quantum decoherence (Tdeoch ≈ 0.9) which Low star formation Infrared emission Absence of high Correlated with low thermal gradients in guiescent nuclei (Section **** Ionization lines (Moderate) Redshift distribution Simulations reproduce abundance at z = 9-12 via "slow entropic ***

"Comparison table showing DUT predictions and JWST observations, highlighting alignment in mass, star formation rate, infrared emission, ionization lines, and redshift distribution, with corresponding star ratings."

"

DUT incorporates JWST discoveries seamlessly, predicting extreme cosmic structures before they are observed."

> oel Almeida, CEO -ExtractoDAO Lab

The 6 August 2025 announcement in The Astrophysical Journal, reporting the discovery of a black hole with 300 million solar masses only 500 million years after the Big Bang, confirms a prediction recorded by the Dead Universe Theory (DUT) Quantum Simulator months prior to the official disclosure.

> While traditional models such as ACDM still struggle to explain the rapid growth of such massive black holes in the primordial universe, the Dead Universe Theory (DUT) interprets these objects as gravitational fossils within a dead cosmological structure — a present-day continuous

spacetime fabric in which the observable universe is embedded. These objects are thermodynamically stabilized and detectable as Small Red Dots (SRDs) or obscured active galactic nuclei.

Contrary to some misconceptions, DUT does not postulate that the observable universe originated from another, separate universe. The framework asserts that there is only one universe, and that the observable domain exists in a state of gravitational collapse within this larger structural continuum, composed of fine-scale constituents of that same universe. To claim otherwise — suggesting the existence of other universes — would fall into the realm of pseudoscience, since no empirical proof currently supports the existence of any universe beyond our own.

"Mainstream science is visibly uncomfortable with the flood of discoveries from JWST — from SRDs to the identification of supermassive black holes so early in cosmic history — given that many models, such as ΛCDM, did not anticipate these extremes. In contrast, the Dead Universe Theory (DUT) is ready to incorporate any JWST observation, operating consistently both on the 13.8-billion-year scale with singularity and on the extended 180-billion-year scale without singularity. While the mainstream attempts to redefine itself to accommodate these findings, the DUT community is growing organically on social media — a clear sign that its predictive, manageable framework is in tune with both the present and the future of cosmology." — Joel Almeida, Scientific Leader, DeSci Lab, ExtractoDAO

Alignment Between DUT Predictions and JWST Observations

The analysis of the article reveals a remarkable alignment between DUT's predictions and JWST's observations of SRDs/LRDs. The following table summarizes the main points of convergence:

The Dead Universe Theory (DUT) Simulator predicted, in advance, the existence of supermassive black holes in the primordial universe, with masses equal to or greater than 10⁸ M□, low star formation rates, and predominantly infrared spectral signatures. These predictions were recorded and published on Zenodo prior to the release of observational data by the CAPERS program conducted with the James Webb Space Telescope (JWST).

On 6 August 2025, a study led by Anthony Taylor and his team, published in The Astrophysical Journal Letters, confirmed the detection of a black hole with approximately 300 million solar masses, formed about 500 million years after the Big Bang. The observed characteristics fully match the parameters simulated by DUT, validating the predictive robustness of the model.

The DUT team expresses its appreciation to Dr. Anthony Taylor and collaborators for their scientific contribution, which, through independent observations, experimentally confirmed predictions previously published.

"Perhaps the time has come to shake the so-called 'cosmic seeds.' We see an intellectual dishonesty in the way data and mathematics are being handled, as we are creating a generation of young astrophysicists and cosmologists frustrated with ΛCDM. Every new discovery and detected object is forced into the framework of cosmic dust or other elements, with the claim

that they 'shouldn't exist' — yet without accepting that the Big Bang has failed in its predictions. Is there something wrong with that? No. But ΛCDM, as it stands, refuses falsifiability, which is why it has become pseudoscience. Meanwhile, DUT has embedded self-refutation code in its simulators, losing points if it introduces concepts that cannot be falsified — such as multiverses, an endless sequence of Big Bangs — while the Big Bang itself continues to show its flaws." — Eduardo Rodrigues, CTO, ExtractoDAO

The simulator, developed by ExtractoDAO S.A., had already modeled compact, quiescent objects with masses $\geq 10^8$ M $_{\odot}$, low star formation rates, and infrared spectral signatures — exactly the profile observed by the CAPERS program team using JWST.

"When we published the prediction on Zenodo (https://zenodo.org/records/16879286), there was no observational record of objects with these characteristics at this timescale. DUT generated this prediction from non-singular gravitational principles and entropic gradients, without any post-observation adjustment. Now, JWST has confirmed exactly this scenario." — Joel Almeida, Creator of DUT

ExtractoDAO created the first DeSci simulator. The startup's plans now focus on an online version integrated with cloud infrastructures such as IBM and Microsoft to allow real-time connections with telescope data. For strategic reasons, the first version is entirely offline, with data imported manually — introducing delays in research but ensuring privacy and certainty for researchers that ExtractoDAO has no access to their data. Additionally, since the company has not yet received external funding, this approach reduces infrastructure costs.

"DUT not only predicted primordial black holes but now projects the cosmos' future: structures at z≈20 and sub-0 K states. Simulations in DUT Quantum and DUT General Relativity are open for community validation. Predictive, verifiable science in action!

https://www.preprints.org/manuscript/202507.1408/v1 https://www.preprints.org/manuscript/202508.0736/v1"

This predictive accuracy — rare in contemporary cosmology — reinforces DUT's robustness as a scientific anticipation tool, capable of guiding observational campaigns even before data collection begins.

Joel Almeida almeida
ExtractoDAO LABS
email us here
Visit us on social media:
LinkedIn
Instagram
YouTube

This press release can be viewed online at: https://www.einpresswire.com/article/840134752

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire™, tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2025 Newsmatics Inc. All Right Reserved.