

Ultrasound unlocks precision drug activation at the molecular level

GA, UNITED STATES, November 19, 2025 /EINPresswire.com/ -- Ultrasound offers a non-invasive and deeply penetrative means of controlling drug activation with high spatial and temporal precision. Recent advances in polymer mechanochemistry have enabled the use of ultrasoundgenerated mechanical forces to selectively cleave covalent and noncovalent bonds, triggering on-demand drug release at the molecular level. These ultrasound-responsive systems allow targeted activation of therapeutic agents only at desired sites, minimizing side effects and improving drug efficacy. The reviewed work highlights multiple mechanistic pathways—including chemical bond cleavage and <u>reactive oxygen species</u> (ROS)-mediated activation—that expand the potential of ultrasound in

Doog and the state of the state

Schematic diagram of ultrasound-induced drug activation systems.

precision medicine. This approach represents a promising strategy for advancing intelligent, controllable, and clinically adaptable drug delivery systems.

Conventional drug delivery often relies on passive diffusion or chemical triggers, which may lead to systemic exposure, toxicity, and decreased therapeutic performance. While stimuli-responsive systems such as light, heat, and magnetic fields have been explored, each encounters limitations including limited penetration, high invasiveness, or biological incompatibility. Ultrasound, on the other hand, provides a tunable, non-invasive physical trigger capable of penetrating deep tissues while avoiding damage to surrounding cells. Moreover, advances in polymer mechanochemistry have demonstrated that ultrasound-induced shear forces can drive selective molecular bond cleavage to activate drugs only when needed. Due to these challenges and opportunities, deeper research is required to develop ultrasound-controlled, efficient, and safe clinical drug activation

platforms.

Researchers from Tianjin University have published a comprehensive review (DOI: 10.1007/s10118-025-3398-3) on ultrasound-induced drug activation systems in the Chinese Journal of Polymer Science (Published online: 2025). The study summarizes how ultrasound triggers mechanical forces and reactive oxygen species (ROS) to selectively cleave chemical bonds within polymer-based drug carriers, enabling precise, controllable therapeutic release. This work highlights a growing field that merges materials science, mechanochemistry, nanomedicine, and biomedical engineering to advance next-generation targeted drug therapies.

The review outlines three major mechanochemical pathways for ultrasound-activated drug release. First, covalent bond cleavage systems—such as disulfide-based or furyl carbonate mechanisms—enable selective drug activation by breaking chemical linkages embedded within polymer chains. These systems allow precise control of drug release kinetics but often require specific polymer designs or ultrasonic intensities. Second, non-covalent disruption systems, including supramolecular cages, polyvalent aptamer chains, and vancomycin–peptide assemblies, utilize weaker intermolecular forces that require lower activation thresholds and are more compatible with biological conditions. Third, nanomaterial-based ROS activation systems leverage ultrasound to generate ROS that trigger secondary chemical reactions for controlled drug release, particularly in tumor environments.

Additionally, emerging platforms such as rotaxane molecular actuators, polymer microbubbles, and high-intensity focused ultrasound (HIFU)-responsive hydrogels offer promising strategies for increasing payload capacity and minimizing off-target activation. While these technologies have demonstrated strong potential in controlled release and spatially targeted drug therapy, further optimization is needed to improve drug-loading efficiency, enhance biocompatibility, and ensure clinical safety.

According to the authors, integrating ultrasound with mechanochemically engineered polymer systems represents a transformative opportunity in precision medicine. They emphasize that mechanochemical activation provides "submolecular resolution," enabling drug release only where external forces are applied. However, the development of clinically viable formulations requires advancing sonosensitizer safety, tuning ultrasound parameters for tissue compatibility, and improving nanocarrier design. The researchers predict that continued progress will move ultrasound-triggered therapies from proof-of-concept laboratory demonstrations into real-world disease treatment.

Ultrasound-controlled drug activation holds broad potential for cancer therapy, regenerative medicine, and localized disease treatment. By allowing therapeutic molecules to remain inactive until triggered at the target site, these systems may reduce systemic toxicity and improve treatment outcomes. Future applications could include implantable ultrasound-responsive biomaterials, personalized treatment guided by imaging techniques, and multi-step drug

activation strategies for combination therapy. Continued interdisciplinary research will help translate these mechanochemical platforms into clinically deployable technologies, advancing safer and more precise therapeutic interventions.

DOI

10.1007/s10118-025-3398-3

Original Source URL

https://doi.org/10.1007/s10118-025-3398-3

Funding information

This work was financially supported by the Young Scientists Fund of the National Natural Science Foundation of China (No. 22305173), Young Scientists Fund of the Natural Science Foundation of Tianjin (No. S25QNM009), Tianjin University Independent Innovation Fund (No. 2025XSU-0008), National Natural Science Foundation of China (No. 22475151), and Xiaomi Young Talents Program.

Lucy Wang BioDesign Research email us here

This press release can be viewed online at: https://www.einpresswire.com/article/868581591

EIN Presswire's priority is source transparency. We do not allow opaque clients, and our editors try to be careful about weeding out false and misleading content. As a user, if you see something we have missed, please do bring it to our attention. Your help is welcome. EIN Presswire, Everyone's Internet News Presswire[™], tries to define some of the boundaries that are reasonable in today's world. Please see our Editorial Guidelines for more information.

© 1995-2025 Newsmatics Inc. All Right Reserved.